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Thermal fluctuations: Long time tails; Kovtun, Yaffe; Kovtun, Moore, Romatschke

Sound modes in uniform plasma

These hard sound modes are part of the bath, giving to the pressure and shear viscosity

Nee(k, t) ≡ 〈e∗(k, t)e(k, t)〉︸ ︷︷ ︸
energy density flucts

=(e+ p)T/c2
s

Ngg(k, t) ≡
〈
g∗i(k, t)gj(k, t)

〉︸ ︷︷ ︸
momentum flucts

=(e+ p)Tδij

In an expanding system these correlators will be driven out of equilibrium.

This changes the evolution of the slow modes.



A Bjorken expansion

T zz

1. The system has an expansion rate of ∂µu
µ = 1/τ

2. The hydrodynamic expansion parameter is

ε ≡ η

(e+ p)τ
� 1

and corrections to hydrodynamics are organized in powers of ε

T zz = p
[
1 + O(ε)︸︷︷︸

1st order

+ O(ε2)︸ ︷︷ ︸
2nd order

+ . . .
]

High k modes are brought to equilibrium by the dissipation and noise



The transition regime:

• There is a wave number where the damping rate competes with the expansion

ηk2

e+ p︸ ︷︷ ︸
damping rate

∼ 1

τ︸︷︷︸
expansion rate

and thus the transition happens for: ε ≡ η/(e+ p)τ

k ∼ 1

τ

1√
ε︸ ︷︷ ︸

Large!

• Thus:

k �1

τ

1√
ε

equilibrium (1)

k ∼ 1

τ
�1

τ

1√
ε

non-equilibrium, initial conditions (2)

Want to develop a set of hydro-kinetic equations for k ∼ 1/(τ
√
ε)



Preview: 〈e∗(k)e(k)〉 for a Bjorken
~k
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A separation scale between the thermalized modes and the kinetic modes
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Λ

k > Λ

1. Fluctuations of modes k > Λ are incorporated into the transport coefficients used

for simulating modes with k < Λ, the pressure, shear etc all depend on Λ

p(Λ), η(Λ), . . .

2. The final physics should not depend on this scale





Developing hydro-kinetics – Brownian motion

Random Walk

dp

dt
= −ηp+ ξ

〈
ξ(t)ξ(t′)

〉
= 2TMη δ(t− t′)

1. Then we want to calculate

N(t) =
〈
p2(t)

〉
2. Integrate the equation for short times

p(t+ ∆t) = −η p(t)∆t+

∫ t+∆t

t
ξ(t′)dt′

3. Compute 〈p(t+ ∆t) p(t+ ∆t)〉 and find an equation

∆N

∆t
= −2η

[
N − TM︸︷︷︸

equilibrium

]



Developing hydro-kinetics – linearized hydro in a uniform system

1. Evolve fields of linearized hydro with parameters p(Λ), η(Λ), s(Λ) etc

φa(k) ≡
(
e(k), gx(k), gy(k), gz(k)

)
2. Then the equations are schematically exactly the same

dφa(k)

dt
= Lab(k)φb(k) + ξa 〈ξaξb〉 = 2TDab(k)δ(t− t′)

3. Break up the equations into eigen modes of Lab, and analyze exactly same way:

right moving sound︸ ︷︷ ︸
λ+ = +icsk− 1

2Γsk
2

left moving sound︸ ︷︷ ︸
λ− = −icsk− 1

2Γsk
2

two diffusion modes︸ ︷︷ ︸
λT = −ηk2/(e+ p)

So for k in the z direction, work with the following linear combos (eigenvects)

φA ≡

cse(k)± gz(k)︸ ︷︷ ︸
φ+ and φ−

, gx(k)︸ ︷︷ ︸
≡ φT1

, gy(k)︸ ︷︷ ︸
≡ φT2





The kinetic equations in flat space

1. The relevant correlators are e.g.

N++(k, t) =
〈
φ∗+(k)φ+(k)

〉
NT1T1

=
〈
φ∗T1(k)φT1

(k)
〉

2. Thus

dN++

dt
=−

4
3ηk

2

e+ p

[
N++ −N eq

++

]
dNT1T1

dt
=− 2ηk2

e+ p

[
NT1T1

−N eq
T1T1

]
and similar equations for N−− and NT2T2

. Here

N eq
T1T1
≡ (e+ p)T and N eq

++ ≡ (e+ p)T

Now we will do the same for an expanding system



Kinetic equations for a Bjorken expansion

• The hydrodynamic field fields φa = (e, gx, gy, τgη) are:

φa(τ,k⊥, κ) =

∫
d2x

∫
dη eik⊥·x⊥+iκ η φa(τ,x⊥, η)

• The equations take the form:

d

dτ
φa(k⊥, κ) = Lab(τ,k⊥, κ)φb(k⊥, κ) + ξa

The previous analysis goes through with a few complications

1. The eigenvalues depend on the expansion rate and the damping rates

λ± = ±icsk − 1
2Γsk

2 − 2 + c2
s

2τ
with k2 ≡ k2

⊥ +
κ2

τ2

2. The eigen vectors slowly change in time – use an adiabatic approximation



The kinetic equations and approach to equilibrium:

• The kinetic equations and approach to equilibrium

∂

∂τ
N++ =−

1

τ

[
2 + c2s0︸ ︷︷ ︸

expansion

+
κ2/τ2

k2⊥ + κ2/τ2︸ ︷︷ ︸
rotation

]
N++ −

4
3
η0

s0T0

(
k2⊥ +

κ2

τ2

)[
N++ −

s0T 2
0

2c2s0τ

]
,︸ ︷︷ ︸

damping to equilibrium

∂

∂τ
NT2T2 =−

2

τ

[
1︸︷︷︸

expansion

+
k2⊥

k2⊥ + κ2/τ2︸ ︷︷ ︸
rotation

]
NT2T2 −

2η0

s0T0

(
k2⊥ +

κ2

τ2

)[
NT2T2 −

s0T 2
0

τ

]
︸ ︷︷ ︸

damping to equilibrium

.

and similar equations for the other modes

• For large k, we solve, and the modes approximately equilibrate:

N++ '
s0T 2

0

2c2s0τ

[
1︸︷︷︸

equilibrium

+
s0T0(

ζ0 + 4
3
η0
)

(k2⊥ + κ2/τ2)

(
c2s0 −

κ2/τ2

k2⊥ + κ2/τ2

)
︸ ︷︷ ︸

first viscous correction analogous to δf

+ . . .
]

Now we solved these kinetic equations numerically



The non-equilibrium steady state at late times:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

N
+

+
 /

 e
q

u
ili

b
ri
u

m

k  [ητ/(e +p)]1/2 

cos(θ)=0.8

hydro-kinetics

visc. approx
 0

 0.5

 1

 1.5

 2

 0.5  1  1.5  2  2.5  3  3.5  4
N

T
2
T

2
 /
 e

q
u
ili

b
ri
u
m

k  [ητ/(e +p)]1/2 

cos(θ)=0.1

hydro-kinetics

visc. approx

Sound Modes Transverse modes

enhanced
but integrable

What are the consequences of this distribution of sound and diffusion modes??



The evolution of the background

de

dτ
= −e+ T zz

τ
where

T zzhydro = p(Λ)︸︷︷︸
Ideal

−
4
3η(Λ)

τ︸ ︷︷ ︸
first order

+ (λ1 − ητπ)
8

9τ2︸ ︷︷ ︸
second order

+ . . .

In addition the fluctuations give another contribution:

T zzflucts = (e+ p) 〈vzvz〉



Evaluating the fluctuation contribution:

T zzflucts

e+ p
= 〈vzvz〉

=

∫
d2k⊥dκ

(2π)3

1

(eo + po)2

[
(N++ +N−−)c2

s cos2 θ +NT2T2
sin2 θ

]
=
ToΛ

3

6π2
−
(

17Λ

120π2

soT
2
o

ηo(Λ)

) 4
3

τ
+ finite

Thus the full stress is then: compare Kovtun, Moore, Romatschke

T zz =T zzhydro + T zzflucts

=pphys −
4
3ηphys

τ
+ finite

pphys ≡p0(Λ) +
ToΛ

3

6π2

ηphys ≡η0(Λ) +

(
17Λ

120π2

soT
2
o

ηo(Λ)

)
where the physical quantities, pphys and ηphys, are independent of Λ

What’s the finite correction?



Final result for a Bjorken expansion:

de

dτ
= −e+ T zz

τ

T zz

e+ p
=
[ p

e+ p
−

4
3η

(e+ p)τ︸ ︷︷ ︸
first order

+ 48.252

(
T 3

s

)
1

(4πη/s)3

(
η

(e+ p)τ

)3/2

︸ ︷︷ ︸
3/2 order from flucts

+
(λ1 − ητπ)

e+ p

8

9τ2︸ ︷︷ ︸
second order

+ . . .
]

• The correction is inversely proportional to entropy

• The 3/2 power follows from k ∼
√

(e+ p)/ητ and phase space:∫
d3k ∼ k3 ∼

(
e+ p

ητ

)3/2



Numerical results:

Take representative numbers

(λ1 − ητπ)

e+ p
' −1

(
η

e+ p

)2 T 3

s
' 1

16

For η/s = 1/4π find:

T zz

e+ p
=

1

4

1.− 0.141︸ ︷︷ ︸
first

(
3

τT

)
+ 0.0521︸ ︷︷ ︸

3/2 order

(
3

τT

)3/2

− 0.0025︸ ︷︷ ︸
second

(
3

τT

)2


while for η/s = 2/4π we have:

T zz

e+ p
=

1

4

1.− 0.283︸ ︷︷ ︸
first

(
3

τT

)
+ 0.0184︸ ︷︷ ︸

3/2 order

(
3

τT

)3/2

− 0.010︸ ︷︷ ︸
second

(
3

τT

)2


Fluctuation contribution is a correction to first order hydro

but larger than second order in practice



Summary

1. For wavenumbers of order

k ∼
√
e+ p

ητ

the system transitions to equilibrium

2. Worked out an alternate description of hydro with noise:

- Hydro + hydro-kinetics

∂µ(Tµνhydro + Tµνflucts) =0

∂τNflucts(k, τ) = . . .

This should be generalized to a general flows.

3. How is the non-linear Tµνflucts imprinted on the particles?

δfflucts =????

4. Fluctuating hydro corrections are as important as second order hydro in practice!


